Archiv: heat waves


15.09.2020 - 16:17 [ Harvard.edu ]

Equatorial solar rotation and its relation to climatic changes

(29. September 1977)

During the years from 1965 to 1976, the magnitude of the solar rotation speed averaged annually showed a good inverse correlation with the annual relative sunspot numbers. It is suggested that this variation of the equatorial solar rotation speed may be responsible for the earth’s present unusual climatic conditions. A similarity concerning the low sunspot activity for 1976 and the year 1643, just before the beginning of the Maunder Minimum (1645-1715) with its very severe climatic conditions, is pointed out. It appears, therefore, likely that the present unusual climatic conditions will remain as long as the solar activity continues to decrease.

15.09.2020 - 15:27 [ Potsdam Institute / Youtube ]

Rossby waves and extreme weather

(15.4.2016)

Learn how giant airstreams high in the sky get trapped sometimes – leading to devastating weather extremes on the ground. Copyright: Potsdam Institute for Climate Impact Research PIK and Climate Media Factory. This video was supported by the German Research Foundation (DFG) and the German Federal Ministry of Education and Research (BMBF).

02.01.2020 - 16:52 [ Harvard.edu ]

Equatorial solar rotation and its relation to climatic changes

(29. September 1977)

During the years from 1965 to 1976, the magnitude of the solar rotation speed averaged annually showed a good inverse correlation with the annual relative sunspot numbers. It is suggested that this variation of the equatorial solar rotation speed may be responsible for the earth’s present unusual climatic conditions. A similarity concerning the low sunspot activity for 1976 and the year 1643, just before the beginning of the Maunder Minimum (1645-1715) with its very severe climatic conditions, is pointed out. It appears, therefore, likely that the present unusual climatic conditions will remain as long as the solar activity continues to decrease.

11.08.2019 - 15:25 [ Harvard.edu ]

Equatorial solar rotation and its relation to climatic changes

(29. September 1977)

During the years from 1965 to 1976, the magnitude of the solar rotation speed averaged annually showed a good inverse correlation with the annual relative sunspot numbers. It is suggested that this variation of the equatorial solar rotation speed may be responsible for the earth’s present unusual climatic conditions. A similarity concerning the low sunspot activity for 1976 and the year 1643, just before the beginning of the Maunder Minimum (1645-1715) with its very severe climatic conditions, is pointed out. It appears, therefore, likely that the present unusual climatic conditions will remain as long as the solar activity continues to decrease.

01.10.2018 - 18:50 [ Potsdam Institute / Youtube ]

Rossby waves and extreme weather

(15.4.2016) Learn how giant airstreams high in the sky get trapped sometimes – leading to devastating weather extremes on the ground. Copyright: Potsdam Institute for Climate Impact Research PIK and Climate Media Factory. This video was supported by the German Research Foundation (DFG) and the German Federal Ministry of Education and Research (BMBF). PIK research on the subject: – Evidence for wave resonance as a key mechanism for generating high-amplitude quasi-stationary waves in boreal Summer

19.08.2018 - 20:50 [ National Center for Biotechnology Information / National Institutes of Health ]

Cosmic Influence on the Sun-Earth Environment

(Dezember 2008) Since the early days of human civilization we have looked at the sky and tried to understand the environment of the Earth and the Universe [1, 2, 3, 4, and 5]. We are continuously collecting data for different environmental parameters. Sudden heat or cold waves, tornados, erratic rainfall and snowfall are being observed and their forewarning has been attempted. Efforts have been made to understand the influence of stars and the Sun, which, although they are distant objects in space, can influence the environment of the Earth. Extragalactic cosmic rays measured as neutron counting rate, represent an energy spectrum, which is being received by the solar system from the distant stars; the particles of cosmic rays are atom –nuclei with almost light velocity [6, 7]. The effects of the Sun on the environment of the Earth were found to be modulated by the geomagnetic field and the ionizing potential of the cosmic rays [8]. Earth directed Coronal Mass Ejection (CME) and its effects on the thermosphere, ionosphere and atmosphere have been studied. During Earth directed CME a beam of electrons (plasma) is pumped towards the Earth [9]. This beam of electrons is highly conductive and generates an electric field that is transmitted to Earth’s natural plasmosphere and ionosphere. This thin layer of changed electric field further influences the ionosphere and atmosphere of the earth [24]. Since a beam of electrons is carried by an electric current, a magnetic disturbance would be produced. Starbursts are caused by a special variety of neutron star known as a magnetar. These fast-spinning, compact stellar bodies create intense magnetic fields that trigger explosions, which are known as starbursts. Starbursts cause the Sun to develop low Planetary Indices (Kp) and low Electron flux (E-flux) conditions for the Sun-Earth Environment.
(…)
If the electron flux from the sun is low, with the subsequent rise in cosmic rays simultaneously anomalous snowfall and lowering of the atmospheric temperature has been observed. It would be possible to understand the movement of clouds and snowfall, as well as atmospheric moisture, if we could efficiently calculate the influence of space weather and cosmic influence on the thermosphere and atmosphere of the Earth [12]. Based on the same hypothesis it was found that an abnormal rise and sudden fall in E-flux, Kp index and atmospheric temperature has the possibility of triggering earthquakes in active fault areas of the Earth due to temporary changes in the magnetic field of the Earth. The whole process was expressed as a precursor of earthquakes in active fault areas.

19.08.2018 - 17:25 [ Potsdam Institute / Youtube ]

Rossby waves and extreme weather

(15.4.2016) Learn how giant airstreams high in the sky get trapped sometimes – leading to devastating weather extremes on the ground. Copyright: Potsdam Institute for Climate Impact Research PIK and Climate Media Factory. This video was supported by the German Research Foundation (DFG) and the German Federal Ministry of Education and Research (BMBF). PIK research on the subject: – Evidence for wave resonance as a key mechanism for generating high-amplitude quasi-stationary waves in boreal Summer

19.08.2018 - 17:09 [ National Center for Atmospheric Research, University Corporation for Atmospheric Research / ScienceDaily.com ]

Scientists link California droughts, floods to distinctive atmospheric waves

(6.4.2017) Wavenumber-5 consists of five pairs of alternating high- and low-pressure features that encircle the globe about six miles (10 kilometers) above the ground. It is a type of atmospheric phenomenon known as a Rossby wave, a very large-scale planetary wave that can have strong impacts on local weather systems by moving heat and moisture between the tropics and higher latitudes as well as between oceanic and inland areas and by influencing where storms occur.

The slow-moving Rossby waves at times become almost stationary. When they do, the result can be persistent weather patterns that often lead to droughts, floods, and heat waves.