Archiv: O2 (oxygen / Sauerstoff)


26.04.2024 - 00:30 [ Geophysical Research Letters 35(16) / researchgate.net ]

Magnetic effect on CO 2 solubility in seawater: A possible link between geomagnetic field variations and climate

(August 2008)

Correlations between geomagnetic-field and climate parameters have been suggested repeatedly, but possible links are controversially discussed. Here we test if weak (Earth-strength) magnetic fields can affect climatically relevant properties of seawater. We found the solubility of air in seawater to be by 15% lower under reduced magneticfield (20 mT) compared to normal field conditions (50 mT). The magnetic-field effect on CO2 solubility is twice as large, from which we surmise that geomagnetic field variations modulate the carbon exchange between atmosphere and ocean. A 1% reduction in magnetic dipole moment may release up to ten times more CO2 from the surface ocean than is emitted by subaerial volcanism.

24.04.2023 - 12:25 [ Geophysical Research Letters 35(16) / researchgate.net ]

Magnetic effect on CO 2 solubility in seawater: A possible link between geomagnetic field variations and climate

(August 2008)

Correlations between geomagnetic-field and climate parameters have been suggested repeatedly, but possible links are controversially discussed. Here we test if weak (Earth-strength) magnetic fields can affect climatically relevant properties of seawater. We found the solubility of air in seawater to be by 15% lower under reduced magneticfield (20 mT) compared to normal field conditions (50 mT). The magnetic-field effect on CO2 solubility is twice as large, from which we surmise that geomagnetic field variations modulate the carbon exchange between atmosphere and ocean. A 1% reduction in magnetic dipole moment may release up to ten times more CO2 from the surface ocean than is emitted by subaerial volcanism.

25.10.2021 - 16:58 [ Geophysical Research Letters 35(16) / researchgate.net ]

Magnetic effect on CO 2 solubility in seawater: A possible link between geomagnetic field variations and climate

(August 2008)

Correlations between geomagnetic-field and climate parameters have been suggested repeatedly, but possible links are controversially discussed. Here we test if weak (Earth-strength) magnetic fields can affect climatically relevant properties of seawater. We found the solubility of air in seawater to be by 15% lower under reduced magneticfield (20 mT) compared to normal field conditions (50 mT). The magnetic-field effect on CO2 solubility is twice as large, from which we surmise that geomagnetic field variations modulate the carbon exchange between atmosphere and ocean. A 1% reduction in magnetic dipole moment may release up to ten times more CO2 from the surface ocean than is emitted by subaerial volcanism.

04.10.2021 - 05:20 [ Geophysical Research Letters 35(16) / researchgate.net ]

Magnetic effect on CO 2 solubility in seawater: A possible link between geomagnetic field variations and climate

(August 2008)

Correlations between geomagnetic-field and climate parameters have been suggested repeatedly, but possible links are controversially discussed. Here we test if weak (Earth-strength) magnetic fields can affect climatically relevant properties of seawater. We found the solubility of air in seawater to be by 15% lower under reduced magneticfield (20 mT) compared to normal field conditions (50 mT). The magnetic-field effect on CO2 solubility is twice as large, from which we surmise that geomagnetic field variations modulate the carbon exchange between atmosphere and ocean. A 1% reduction in magnetic dipole moment may release up to ten times more CO2 from the surface ocean than is emitted by subaerial volcanism.

20.09.2021 - 05:42 [ Geophysical Research Letters 35(16) / researchgate.net ]

Magnetic effect on CO 2 solubility in seawater: A possible link between geomagnetic field variations and climate

(August 2008)

Correlations between geomagnetic-field and climate parameters have been suggested repeatedly, but possible links are controversially discussed. Here we test if weak (Earth-strength) magnetic fields can affect climatically relevant properties of seawater. We found the solubility of air in seawater to be by 15% lower under reduced magneticfield (20 mT) compared to normal field conditions (50 mT). The magnetic-field effect on CO2 solubility is twice as large, from which we surmise that geomagnetic field variations modulate the carbon exchange between atmosphere and ocean. A 1% reduction in magnetic dipole moment may release up to ten times more CO2 from the surface ocean than is emitted by subaerial volcanism.

10.08.2021 - 10:01 [ Geophysical Research Letters 35(16) / researchgate.net ]

Magnetic effect on CO 2 solubility in seawater: A possible link between geomagnetic field variations and climate

(August 2008)

Correlations between geomagnetic-field and climate parameters have been suggested repeatedly, but possible links are controversially discussed. Here we test if weak (Earth-strength) magnetic fields can affect climatically relevant properties of seawater. We found the solubility of air in seawater to be by 15% lower under reduced magneticfield (20 mT) compared to normal field conditions (50 mT). The magnetic-field effect on CO2 solubility is twice as large, from which we surmise that geomagnetic field variations modulate the carbon exchange between atmosphere and ocean. A 1% reduction in magnetic dipole moment may release up to ten times more CO2 from the surface ocean than is emitted by subaerial volcanism.

10.08.2021 - 09:58 [ Ludwig Maximilian Universität München ]

Wenn ein Treibhausgas baden geht: Wie das Erdmagnetfeld unser Klima beeinflusst

(6. Oktober 2008)

Die Ergebnisse zeigten, dass selbst kleine Veränderungen des Magnetfelds die Löslichkeit von Gasen im Wasser verändern. „Wenn das Magnetfeld schwächer war, löste sich 15 Prozent weniger Luft im Wasser als bei einem stärkeren Magnetfeld“, erläutert Winklhofer. „Für Kohlendioxid war der beobachtete Effekt sogar doppelt so stark.“

15.07.2021 - 07:23 [ Ludwig Maximilian Universität München ]

Wenn ein Treibhausgas baden geht: Wie das Erdmagnetfeld unser Klima beeinflusst

(6. Oktober 2008)

Die Ergebnisse zeigten, dass selbst kleine Veränderungen des Magnetfelds die Löslichkeit von Gasen im Wasser verändern. „Wenn das Magnetfeld schwächer war, löste sich 15 Prozent weniger Luft im Wasser als bei einem stärkeren Magnetfeld“, erläutert Winklhofer. „Für Kohlendioxid war der beobachtete Effekt sogar doppelt so stark.“

21.02.2021 - 13:55 [ Ludwig Maximilian Universität München ]

Wenn ein Treibhausgas baden geht: Wie das Erdmagnetfeld unser Klima beeinflusst

(6. Oktober 2008)

Die Ergebnisse zeigten, dass selbst kleine Veränderungen des Magnetfelds die Löslichkeit von Gasen im Wasser verändern. „Wenn das Magnetfeld schwächer war, löste sich 15 Prozent weniger Luft im Wasser als bei einem stärkeren Magnetfeld“, erläutert Winklhofer. „Für Kohlendioxid war der beobachtete Effekt sogar doppelt so stark.“

21.02.2021 - 13:52 [ Geophysical Research Letters 35(16) / researchgate.net ]

Magnetic effect on CO 2 solubility in seawater: A possible link between geomagnetic field variations and climate

(August 2008)

Correlations between geomagnetic-field and climate parameters have been suggested repeatedly, but possible links are controversially discussed. Here we test if weak (Earth-strength) magnetic fields can affect climatically relevant properties of seawater. We found the solubility of air in seawater to be by 15% lower under reduced magneticfield (20 mT) compared to normal field conditions (50 mT). The magnetic-field effect on CO2 solubility is twice as large, from which we surmise that geomagnetic field variations modulate the carbon exchange between atmosphere and ocean. A 1% reduction in magnetic dipole moment may release up to ten times more CO2 from the surface ocean than is emitted by subaerial volcanism.

15.09.2020 - 16:30 [ University of North Carolina at Charlotte ]

Solar Rotation Effects on The Thermospheres of Mars and Earth

(spring 2006)

The first thing that must be understood in this paper is the chain of events that is being tracked. From the Sun‘s rotational quirks, to their effects on CO2 in the respective atmospheres of Mars and Earth. There is also a comparison to older, normalized data from Venus.

(…)

Interestingly, once the data was compiled, there was no correlation found between the levels of CO2 found in the upper atmosphere (~150km on Earth, where this transformation takes place.) Broadening their search, the authors found a strong correlation between the ratio of CO2/O2 and the thermal changes. They feel this suggests that the thermal diffusion effect relies on some form of resonance between the two molecules involved

22.01.2020 - 22:09 [ Geophysical Research Letters 35(16) / researchgate.net ]

Magnetic effect on CO 2 solubility in seawater: A possible link between geomagnetic field variations and climate

(August 2008)

Correlations between geomagnetic-field and climate parameters have been suggested repeatedly, but possible links are controversially discussed. Here we test if weak (Earth-strength) magnetic fields can affect climatically relevant properties of seawater. We found the solubility of air in seawater to be by 15% lower under reduced magneticfield (20 mT) compared to normal field conditions (50 mT). The magnetic-field effect on CO2 solubility is twice as large, from which we surmise that geomagnetic field variations modulate the carbon exchange between atmosphere and ocean. A 1% reduction in magnetic dipole moment may release up to ten times more CO2 from the surface ocean than is emitted by subaerial volcanism.

02.01.2020 - 16:44 [ Gizmodo.com ]

Pluto Is Emitting X-Rays, and That’s Really Weird

(16.09.2016)

The most likely explanation, according to Wolk, is that high energy particles from the solar wind are colliding with escaped bits of Pluto’s atmosphere—which is mostly nitrogen, carbon, and oxygen—stripping away electrons, and producing an x-ray flare. If true, that’s a very important insight, because it means Pluto’s atmosphere is boiling away into space. Slowly.

02.01.2020 - 13:40 [ Geophysical Research Letters 35(16) / researchgate.net ]

Magnetic effect on CO 2 solubility in seawater: A possible link between geomagnetic field variations and climate

(August 2008)

Correlations between geomagnetic-field and climate parameters have been suggested repeatedly, but possible links are controversially discussed. Here we test if weak (Earth-strength) magnetic fields can affect climatically relevant properties of seawater. We found the solubility of air in seawater to be by 15% lower under reduced magneticfield (20 mT) compared to normal field conditions (50 mT). The magnetic-field effect on CO2 solubility is twice as large, from which we surmise that geomagnetic field variations modulate the carbon exchange between atmosphere and ocean. A 1% reduction in magnetic dipole moment may release up to ten times more CO2 from the surface ocean than is emitted by subaerial volcanism.

14.11.2019 - 12:50 [ CNN ]

The Curiosity rover detects oxygen behaving strangely on Mars

„We‘re struggling to explain this,“ said Melissa Trainer, study author and planetary scientist at NASA‘s Goddard Space Flight Center. „The fact that the oxygen behavior isn‘t perfectly repeatable every season makes us think that it‘s not an issue that has to do with atmospheric dynamics. It has to be some chemical source and sink (of elements into the soil) that we can‘t yet account for.“

It relates back to the methane mystery.