Archiv: thermosphere


15.09.2020 - 16:30 [ University of North Carolina at Charlotte ]

Solar Rotation Effects on The Thermospheres of Mars and Earth

(spring 2006)

The first thing that must be understood in this paper is the chain of events that is being tracked. From the Sun‘s rotational quirks, to their effects on CO2 in the respective atmospheres of Mars and Earth. There is also a comparison to older, normalized data from Venus.

(…)

Interestingly, once the data was compiled, there was no correlation found between the levels of CO2 found in the upper atmosphere (~150km on Earth, where this transformation takes place.) Broadening their search, the authors found a strong correlation between the ratio of CO2/O2 and the thermal changes. They feel this suggests that the thermal diffusion effect relies on some form of resonance between the two molecules involved

15.09.2020 - 13:26 [ EOS.org ]

The Thermosphere Responds to a Weaker Than Normal Solar Cycle

(05.04.2019)

The cooling near solar minimum is natural and specific to the thermosphere. The cooling thermosphere does not affect the troposphere, the layer of the atmosphere closest to Earth’s surface where people live. The temperatures we experience on the ground do not get colder because of this solar cycle. NASA and other climate researchers continue to see a warming trend in the troposphere. These two effects are ongoing but unrelated.

Nitric oxide and carbon dioxide play important roles in cooling the thermosphere.

29.04.2019 - 10:50 [ Phys.org ]

Rapid destruction of Earth-like atmospheres by young stars

(24.04.2019)

The high energy radiation is important because it is absorbed high in the atmosphere of a planet, causing the gas to be heated. For the Earth, the gas is heated to temperatures of more than 1000 degrees Celsius in the upper region known as the thermosphere. This is the region in which spacecraft such as satellites and the International Space Station fly. When orbiting young stars with high activity levels, the thermospheres of planets are heated to much higher temperatures which, in extreme cases, can cause the gas to flow away from the planet.