For the first time, astronomers followed cosmic neutrinos into the fire-spitting heart of a supermassive blazar.
Archiv: Science Communication Lab
IceCube Neutrino Telescope Detects Origin of Extragalactic Particles
For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.
IceCube neutrinos point to long-sought cosmic ray accelerator
An international team of scientists has found the first evidence of a source of high-energy cosmic neutrinos, ghostly subatomic particles that can travel unhindered for billions of light years from the most extreme environments in the universe to Earth.
The observations, made by the IceCube Neutrino Observatory at the Amundsen–Scott South Pole Station and confirmed by telescopes around the globe and in Earth’s orbit, help resolve a more than a century-old riddle about what sends subatomic particles such as neutrinos and cosmic rays speeding through the universe.
Scientists capture mysterious ‘ghost particle’ in a giant ice cube in ‘triumph’ that changes how we see the universe
Scientists have captured a ghost-like subatomic particle on Earth, helping to solve a mystery baffling scientists for 100 years.
The so-called “ghost particle” was trapped by researchers in a giant ice cube at the South Pole.
It’s actually a high-energy neutrino, and is the first of its type ever detected by scientists.
Importantly, researchers believe they’ve tracked its likely source: a supermassive black hole that emits light and cosmic rays.